首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6926篇
  免费   555篇
  国内免费   261篇
  2024年   15篇
  2023年   130篇
  2022年   127篇
  2021年   203篇
  2020年   197篇
  2019年   252篇
  2018年   294篇
  2017年   206篇
  2016年   214篇
  2015年   259篇
  2014年   311篇
  2013年   747篇
  2012年   223篇
  2011年   275篇
  2010年   243篇
  2009年   265篇
  2008年   282篇
  2007年   328篇
  2006年   325篇
  2005年   323篇
  2004年   226篇
  2003年   211篇
  2002年   194篇
  2001年   164篇
  2000年   128篇
  1999年   120篇
  1998年   114篇
  1997年   124篇
  1996年   95篇
  1995年   111篇
  1994年   83篇
  1993年   81篇
  1992年   103篇
  1991年   58篇
  1990年   63篇
  1989年   68篇
  1988年   67篇
  1987年   59篇
  1986年   52篇
  1985年   60篇
  1984年   79篇
  1983年   45篇
  1982年   53篇
  1981年   46篇
  1980年   32篇
  1979年   30篇
  1978年   20篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
排序方式: 共有7742条查询结果,搜索用时 187 毫秒
101.
Modulation of Opioid Receptor Binding by Cis and Trans Fatty Acids   总被引:3,自引:2,他引:1  
In synaptosomal brain membranes, the addition of oleic acid (cis), elaidic acid (trans), and the cis and trans isomers of vaccenic acid, at a concentration of 0.87 mumol of lipid/mg of protein, strongly reduced the Bmax and, to a lesser degree, the binding affinity of the mu-selective opioid [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol ([3H]DAMGO). At comparable membrane content, the cis isomers of the fatty acids were more potent than their trans counterparts in inhibiting ligand binding and in decreasing membrane microviscosity, both at the membrane surface and in the core. However, trans-vacenic acid affected opioid receptor binding in spite of just marginally altering membrane microviscosity. If the receptors were uncoupled from guanine nucleotide regulatory protein, an altered inhibition profile was obtained: the impairment of KD by the fatty acids was enhanced and that of Bmax reduced. Receptor interaction of the delta-opioid [3H](D-Pen2,D-Pen5)enkephalin was modulated by lipids to a greater extent than that of [3H]DAMGO: saturable binding was abolished by both oleic and elaidic acids. The binding of [3H]naltrexone was less susceptible to inhibition by the fatty acids, particularly in the presence of sodium. In the absence of this cation, however, cis-vaccenic acid abolished the low-affinity binding component of [3H]naltrexone. These findings support the membrane model of opioid receptor sequestration depicting different ionic environments for the mu- and delta-binding sites. The results of this work show distinct modulation of different types and molecular states of opioid receptor by fatty acids through mechanisms involving membrane fluidity and specific interactions with membrane constituents.  相似文献   
102.
Vitamin A (retinol) and some of its analogs exhibited varying degrees of inhibition on induced iron and ascorbic acid lipid peroxidation of rat brain mitochondria. Malonyldialdehyde production was used as an index of the extent of in vitro lipid peroxidation. The fat-soluble vitamins retinol, retinol acetate, retinoic acid, retinol palmitate, and retinal at concentrations between 0.1 and 10.0 mmol/L inhibited brain lipid peroxidation. Retinol and retinol acetate were the most effective inhibitors. It is concluded from this study that retinol and its analogs can be considered as potential antioxidant factors, more potent than some of the well-known antioxidants such as alpha-tocopherol and butylated hydroxytoluene.  相似文献   
103.
Abstract. In experiments where mung beans ( Vigna radiata L.) and peas ( Pisum sativum L.) have been pre-exposed to ethylene and afterwards treated with ozone, it has been shown that such ethylenepretreated plants may become more resistant to ozone. Further experiments with hydrogen peroxide (H2O2) and the herbicide paraquat suggest that this increased resistance against ozone depends on the stimulation of ascorbate peroxidase activity which provides cells with increased resistance against the formation of H2O2 which is also formed when plants are fumigated with ozone. These results explain why increased production of ethylene can be observed in plants exposed with ozone or other oxidative stress and clearly demonstrate that in plants, as well as animals, peroxidases protect cells against harmful concentrations of hydroperoxides.  相似文献   
104.
Incubation of rat-liver microsomes, previously azide-treated to inhibit catalase, with H2O2 caused a loss of cytochrome P-450 but not of cytochrome b5. This loss of P-450 was not prevented by scavengers of hydroxyl radical, chain-breaking antioxidants or metal ion-chelating agents. Application of the thiobarbituric acid (TBA) assay to the reaction mixture suggested that H2O2 induces lipid peroxidation, but this was found to be due largely or completely to an effect of H2O2 on the TBA assay. By contrast, addition of ascorbic acid and Fe(III) to the microsomes led to lipid peroxidation and P-450 degradation: both processes were inhibited by chelating agents and chain-breaking antioxidants, but not by hydroxyl radical scavengers. H2O2 inhibited ascorbate/Fe (III)-induced microsomal lipid peroxidation, but part of this effect was due to an action of H2O2 in the TBA test itself. H2O2 also decreased the colour measured after carrying out the TBA test upon authentic malondialdehyde, tetraethoxypropane, a DNA-Cu2+/o-phenanthroline system in the presence of a reducing agent, ox-brain phospholipid liposomes in the presence of Fe(III) and ascorbate, or a bleomycin-iron ion/DNA/ascorbate system. Caution must be used in interpreting the results of TBA tests upon systems containing H2O2.  相似文献   
105.
How to Characterize a Biological Antioxidant   总被引:15,自引:0,他引:15  
An antioxidant is a substance that, when present at low concentrations compared to those of an oxidizable substrate, significantly delays or prevents oxidation of that substrate. Many substances have been suggested to act as antioxidants in vivo, but few have been proved to do so. The present review addresses the criteria necessary to evaluate a proposed antioxidant activity. Simple methods for assessing the possibility of physiologically-feasible scavenging of important biological oxidants (superoxide, hydrogen peroxide, hydroxyl radical, hypochlorous acid, haem-associated ferryl species, radicals derived from activated phagocytes, and peroxyl radicals, both lipid-soluble and water-soluble) are presented, and the appropriate control experiments are described. Methods that may be used to gain evidence that a compound actually does function as an antioxidant in vivo are discussed. A review of the pro-oxidant and anti-oxidant properties of ascorbic acid that have been reported in the literature leads to the conclusion that this compound acts as an antioxidant in vivo under most circumstances.  相似文献   
106.
Studies documenting spin trapping of lipid radicals in defined model systems have shown some surprising solvent effects with the spin trap DMPO. In aqueous reactions comparing the reduction of H2O2 and methyl linoleate hydroperoxide (MLOOH) by Fez+, hydroxyl (HO·) and lipid alkoxyl (LO·) radicals produce identical four-line spectra with line intensities 1:2:2:1. Both types of radicals react with commonly-used HO· scavengers, e.g. with ethanol to produce ·C(CH3)HOH and with dirnethylsulfoxide (DMSO)togive ·CH3. However, DMSO radicals (either ·CH3or ·OOCH3) react further with lipids, and when radicals are trapped in these MLOOH systems, multiple adducts are evident. When acetonitrile is added to the aqueous reaction systems in increasing concentrations, ·CH2CN radicals resulting from HO· attack on acetonitrile are evident, even with trace quantities of that solvent. In contrast, little, if any, reaction of LO· with acetonitrile occurs, even in 100% acetonitrile. A single four-line signal persists in the lipid systems as long as any water is present, although the relative intensity of the two center lines decreases as solvent-induced changes gradually dissociate the nitrogen and β-hydrogen splitting constants. Extraction of the aqueous-phase adducts into ethyl acetate shows clearly that the identical four-line spectra in the H202 and MLOOH systems arise from different radical species in this study, but the lack of stability of the adducts to phase transfer may limit the use of this technique for routine adduct identification in more complex systems. These results indicate that the four-line 1:2:2:1. aN = aH = 14.9G spectrum from DMPO cannot automatically be assigned to the HO· adduct in reaction systems where lipid is present, even when the expected spin adducts from ethanol or DMSO appear confirmatory for HO-. Conclusive distinction between HO· and LO· ultimately will require use of 13C-labelled DMPO or HPLC-MS separation and specific identification of adducts when DMPO is used as the spin trap.  相似文献   
107.
豌豆叶绿体脂氧合酶(LOX)活性在连体叶片衰老过程中变化不大。ABA处理离体叶片2d叶绿体LOX活性升高,处理时间延长活性下降。抗氧化剂α-生育酚、谷胱甘肽、没食子酸丙酯抑制豌豆叶绿体LOX活性。脂质过氧化产物丙二醛对豌豆叶绿体LOX和大豆纯LOX-1的活性均有抑制作用,大豆LOX-1能促进离体豌豆叶绿体膜脂过氧化作用。因此,豌豆叶绿体LOX可能参与叶片衰老过程中叶绿体膜结构和功能的改变,又受膜脂过氧化产物的制约。  相似文献   
108.
Antioxidant enzyme activities in embryologic and early larval stages of turbot   总被引:15,自引:0,他引:15  
The antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6), selenium-dependent glutathione peroxidase (SeGPX; EC 1.11.1.9), glutathione reductase (EC 1.6.4.2) and DT-diaphorase (EC 1.6.99.2), plus total GPX activity (sum of SeGPX and Se-independent GPX activities), were studied in 13 500 g supernatants of embryos and 3-day and 11-day post-hatch larvae of turbot Scophthalmus maximus L. SOD activity decreased progressively during development from embryos to 11-day-old larvae, indicative of a decreased need to detoxify superoxide anion radical (O2). In contrast, catalase, SeGPX and glutathione reductase activities increased progressively from embryos to 11-day-old larvae, indicative of an increased need to metabolize hydrogen peroxide (H2O2) and organic peroxides. Consistent with the latter changes, levels of lipid peroxides (i.e. thiobarbituric acid reactive substances) increased 13-fold from embryos to 3-day-old larvae, whilst total peroxidizable lipid was indicated to decrease. Increases were seen for NADPH-dependent DT-diaphorase (after hatching) and total GPX (between 3 and 11 days post-hatch) activities, whilst no change was found in NADH-dependent DT-diaphorase activity. Overall, the results demonstrate a capacity for early life-stages of S. maximus to detoxify reactive oxygen species (O2 and H2O2) and other pro-oxidant compounds (organic peroxides, redox cycling chemicals). Furthermore, qualitative and quantitative antioxidant changes occur during hatching and development, possibly linked to such events as altered respiration rates (SOD changes) and tissue reorganization and development (catalase, SeGPX, lipid peroxidation).  相似文献   
109.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   
110.
Abstract. The objectives of this study were to determine whether adult Mediterranean fruit flies, Ceratitis capitata Wiedeman (Diptera: Tephritidae), are capable of synthesizing lipids, and whether adult diet affects this ability.Lipid levels in females fed protein and carbohydrate or carbohydrate alone declined significantly from emergence to the fourth day of life and then rose back to teneral levels on the fifth day, before oviposition took place on the sixth day.In males fed protein and carbohydrate, lipid levels initially declined as males aged and then stabilized.In carbohydrate-fed males lipid levels declined following emergence and recovered somewhat by the sixth day.Lipid levels declined significantly when flies underwent post-emergence starvation, but after substantial feeding on the above-mentioned diets they eventually (within 6–7 days) reached teneral levels in all experimental groups.Multivariate analysis of variance revealed that differences in lipid contents are primarily related to the flies' age, which corresponds to the various sex-specific activities these flies exhibit.Average lipid investment in eggs was found to equal teneral lipid levels in females.Without lipogenic abilities, oviposition would completely deplete female lipid reserves.We conclude that adult medflies are capaple of lipid synthesis, and that this capability is modulated by individual and sex-specific activity patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号